
Thinking Immutably About Pipelines

David Pollak
Silesia JUG June 10, 2016

About @dpp
• Wrote a bunch of Spreadsheets

• Founded Li6 & Wrote Beginning Scala

• VP Engineering Kiva.org (a PHP shop)

What We're Covering
• The Unix way

• Scala & Clojure

• Hash Array Mapped Tries

• Java Streams and Lambdas

https://en.wikipedia.org/wiki/Hash_array_mapped_trie

Unix Piping
tr 'A-Z' 'a-z' <fnord.txt | tr -cs 'a-z' '\n' | \
 sort | uniq | comm -23 - /usr/share/dict/words

• Simple Spell Checker

• Each Program (func7on) in the chain does
something specific

• Composable and Incremental to Learn/Understand

Why did Unix Pipes Win?
• Each Program Excellent on its Own

• Simple Explora7on

• Composing Pipes forces Thinking & Isola7on

• Did pipes win? Windows PowerShell

How do Humans Learn?
• Incrementally

• Via Explora3on

• Applying Isolated Pieces to Form a Whole

How Many Things Can You Hold in
Your Head?

• Dunno... but it's limited

• Each 5me we add "something", something else has
to drop out

• So... less is more

What About Inside a Program?
• Can we "chain" or compose opera1ons?

• Can we isolate logic and perhaps re-use the logic?

• Can we build logic Incrementally?

Yes!!

Some People call it
"Func1onal Programming"

Detour: Cycloma/c Complexity

example
int age = 29;

if (age < 13)
{
 System.out.println("You are but a wee child!");
}
else if (age < 19)
{
 System.out.println("You are no longer a child, but a budding teenager.");
}
else
{
 if (age < 65)
 {
 System.out.println("You are an adult!");
 }
 else
 {
 System.out.println("You are now a senior, enjoy the good life friends!");
 }
 System.out.println("Also, since you are over the age of 19, you deserve a drink!");
}

This gets outpu,ed because we know we’re inside
that outer else block of code. Remember to follow
through those curly braces {} to know exactly where
you are.

https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://howtoprogramwithjava.com/nested-if-statements/

Detour: Cycloma/c Complexity
• More Code Paths == Complexity

• Complexity == Bad

• Complexity means harder to understand and harder
to keep track of the impact of changes

• More stuff to remember ✒ more requirements that
your brain executes code

https://en.wikipedia.org/wiki/Cyclomatic_complexity

Take While, Java Edi/on
final String x = "Elwood Eats Mice";
final StringBuilder ret = new StringBuilder();
for (char c : x.toCharArray()) {
 if (c != ' ') ret.append(c);
 else break;
}

return ret.toString();

Take While, Func/onal Edi/ons
Scala:

scala> val x = "Elwood Eats Mice"
x: String = Elwood Eats Mice

scala> x.takeWhile(_ != ' ')
res0: String = Elwood

Clojure:

(def x "Elwood Eats Mice")

(->> x
 (take-while #(not= % \space))
 clojure.string/join)
;; "Elwood"

Yeah, So?
• Fewer Lines of Code

• More Readable: Eyes drawn to logic

• Logic isolated and you can understand each bit of it

• The "What" not the "How"

Age Thing, Less Complex
(def rules [[#(< % 13) "You are but a wee child!"]
 [#(and (>= % 13) (<= % 19)) "You are no longer a child, but a budding teenager."]
 [#(and (> % 19) (< % 65)) "You are an adult!"]
 [#(>= % 65) "You are now a senior, enjoy the good life friends!"]
 [#(>= % 18) "Since you are 18 or over, you deserve a drink!"]])

(defn messages [age] (->>
 rules
 (filter #((first %) age))
 (map second)))

user> (messages 13)
;; => ("You are no longer a child, but a budding teenager.")
user> (messages 32)
;; => ("You are an adult!" "Since you are 18 or over, you deserve a drink!")
user> (messages 3)
;; => ("You are but a wee child!")
user> (messages 67)
;; => ("You are now a senior, enjoy the good life friends!" "Since you are 18 or over, you deserve a drink!")

Chaining

First Name of Valid Persons, Sorted by Age

def validByAge(in: List[Person]) =
 in.filter(_.valid).
 sort(_.age < _.age).
 map(_.first)

(->> in
 (filter :valid)
 (sort-by :age)
 (map :first))

Chaining Is Readable

Chaining Allows Func0on Re-
Use

Immutable Data Structures
• Immutable Means never saying "synchronized"

• Great for Mul;-Threaded Systems

• Great for Distributed Systems

Performance of O(Log N)?

http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf

Not Any More
• HAMT (Hash Array Mapped Tries)

• Effec5vely O(1) for most opera5ons

• Developed at EPFL

• Built into Clojure & Scala... not so much for Java
(Guava?)

But, What About Java?

Where can we get some of the is goodness?

Java 8 Streams and Lambdas
• Streams: Lazy Collec2ons (like Unix Pipes, Clojure
Seq, and Scala Stream)

• Lambdas: Func2ons that close over final local
scope

Java Example
public static Stream<String> validByAge(Stream<Person> in) {
 return in.filter(Person::isValid).
 sorted((a, b) -> a.getAge() - b.getAge()).
 map(Person::getFirst);
}

That's more like it!

But What if We Want a List?

Collect it...

public static List<String> validByAge2(Stream<Person> in) {
 return in.filter(Person::isValid).
 sorted((a, b) -> a.getAge() - b.getAge()).
 map(Person::getFirst).
 collect(Collectors.toList());
}

Collect "reduces" lazy stream to something
concrete.

What About This Lazy Thing?
• Lazy allows dealing with unbounded streams

• Data consumed "as needed"

• Much lower memory footprint

public static IntStream primes(int until) {
 return IntStream.rangeClosed(1, until).filter(Main::isPrime);
}

Computed all the primes up to 1B.

Conclusion
• The "Unix Way" is the Func3onal Way

• Scala and Clojure led FP charge on JVM

• Java8 has good features to allow chaining on logic

• Lambdas and Streams reduce cycloma3c
complexity: more maintainable code

Ques%ons & Thanks!

Reference
• HAMT h(ps://idea.popcount.org/2012-07-25-

introduc?on-to-hamt/

• Wikipedia h(ps://en.wikipedia.org/wiki/
Hasharraymapped_trie

https://idea.popcount.org/2012-07-25-introduction-to-hamt/
https://idea.popcount.org/2012-07-25-introduction-to-hamt/
https://en.wikipedia.org/wiki/Hash_array_mapped_trie
https://en.wikipedia.org/wiki/Hash_array_mapped_trie
https://en.wikipedia.org/wiki/Hash_array_mapped_trie
https://en.wikipedia.org/wiki/Hash_array_mapped_trie

