Thinking Immutably About Pipelines

David Pollak
Silesia JUG June 10, 2016

About @dpp

e Wrote a bunch of Spreadsheets
e Founded Lift & Wrote Beginning Scala
VP Engineering Kiva.org (a PHP shop)

What We're Covering

The Unix way
Scala & Clojure
Hash Array Mapped Tries

Java Streams and Lambdas

https://en.wikipedia.org/wiki/Hash_array_mapped_trie

Unix Piping

tr 'A-Z' 'a-z' <fnord.txt | tr -cs 'a-z' '\n' | \
sort | uniq | comm -23 - /usr/share/dict/words

e Simple Spell Checker

e Each Program (function) in the chain does
something specific

e Composable and Incremental to Learn/Understand

Why did Unix Pipes Win?

Each Program Excellent on its Own
Simple Exploration

Composing Pipes forces Thinking & Isolation

Did pipes win? Windows PowerShell

How do Humans Learn?

e |ncrementally
* Via Exploration

 Applying Isolated Pieces to Form a Whole

How Many Things Can You Hold In
Your Head?

e Dunno... but it's limited

e Each time we add "something", something else has
to drop out

e So...less is more

What About Inside a Program?

e Can we "chain" or compose operations?
e Can we isolate logic and perhaps re-use the logic?

e Can we build logic Incrementally?

Yes!!

Some People call it
"Functional Programming"

Detour: Cyclomatic Complexity

example

-~ D W2 -~ D W2 - -
— — Hh =1
ct

This gets outputted because we know we're inside
that outer else block of code. Remember to follow
through those curly braces {} to know exactly where
you are.

https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://howtoprogramwithjava.com/nested-if-statements/

Detour: Cyclomatic Complexity

More Code Paths == Complexity
Complexity == Bad

Complexity means harder to understand and harder
to keep track of the impact of changes

More stuff to remember = more requirements that
your brain executes code

https://en.wikipedia.org/wiki/Cyclomatic_complexity

Take While, Java Edition

final String x = "Elwood Eats Mice";
final StringBuilder ret = new StringBuilder();
for (char c¢ : x.toCharArray()) {

1f (¢ I= " ") ret.append(c);

else break;

J

return ret.toString();

Take While, Functional Editions

Scala:
scala> val x = "Elwood Eats Mice"
Xx: String = Elwood Eats Mice
scala> x.takeWhile(_ != " ")
res@: String = Elwood
Clojure:

(def x "Elwood Eats Mice")

(->> x
(take-while #(not= % \space))
clojure.string/join)

;5 "Elwood"

Yeah, So?

Fewer Lines of Code
More Readable: Eyes drawn to logic

Logic isolated and you can understand each bit of it

The "What" not the "How"

Age Thing, Less Complex

(def rules [[#(< % 13) "You are but a wee child!"]

[#(and (>= % 13) (<= % 19)) "You are no longer a child, but a budding teenager."]
[#(and (> % 19) (< % 65)) "You are an adult!"]

[#(>= % 65) "You are now a senior, enjoy the good life friends!"]

[#(>= % 18) "Since you are 18 or over, you deserve a drink!"]])

(defn messages [age] (->>

user>
;o=
user>
;=
user>
;o=
user>
. =>

29

(messages
("You are
(messages
("You are
(messages
("You are
(messages
("You are

rules
(filter #((first %) age))
(map second)))

13)

no longer a child, but a budding teenager.")

32)

an adult!" "Since you are 18 or over, you deserve a drink!")

3)

but a wee child!")

67)

now a senior, enjoy the good life friends!" "Since you are 18 or over, you deserve a drink!'")

Chaining

First Name of Valid Persons, Sorted by Age

def validByAge(in: List[Person]) =
in.filter(.valid).
sort(_ .age < _.age).
map(_.first)

(->> 1in
(filter :valid)
(sort-by :age)
(map :first))

Chaining Is Readable

Chaining Allows Function Re-
Use

Immutable Data Structures

 |Immutable Means never saying "synchronized"
e Great for Multi-Threaded Systems

e Great for Distributed Systems

Performance of O(Log N)?

http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf

Not Any More

HAMT (Hash Array Mapped Tries)
Effectively O(1) for most operations
Developed at EPFL

Built into Clojure & Scala... not so much for Java
(Guava?)

But, What About Java?

Where can we get some of the is goodness?

Java 8 Streams and Lambdas

e Streams: Lazy Collections (like Unix Pipes, Clojure
Seq, and Scala Stream)

e Lambdas: Functions that close over final local
scope

Java Example

public static Stream<String> validByAge(Stream<Person> in) {
return in.filter(Person::isValid).
sorted((a, b) -> a.getAge() - b.getAge()).
map(Person: :getFirst);

b

That's more like it!

But What if We Want a List?

Collect it...

public static List<String> validByAgelZ(Stream<Person> in) {
return in.filter(Person::isValid).
sorted((a, b) -> a.getAge() - b.getAge()).
map(Person: :getFirst).
collect(Collectors.toList());

b

Collect "reduces" lazy stream to something
concrete.

What About This Lazy Thing?

e |azy allows dealing with unbounded streams
e Data consumed "as needed"

e Much lower memory footprint

public static IntStream primes(int until) {
return IntStream.rangeClosed(1l, until).filter(Main::isPrime);

b

Computed all the primes up to 1B.

Conclusion

The "Unix Way" is the Functional Way
Scala and Clojure led FP charge on JVM
Java8 has good features to allow chaining on logic

Lambdas and Streams reduce cyclomatic
complexity: more maintainable code

Questions & Thanks!

Reference

e HAMT https://idea.popcount.org/2012-07-25-
introduction-to-hamt/

 Wikipedia https:/en.wikipedia.org/wiki/
Hasharraymapped trie

https://idea.popcount.org/2012-07-25-introduction-to-hamt/
https://idea.popcount.org/2012-07-25-introduction-to-hamt/
https://en.wikipedia.org/wiki/Hash_array_mapped_trie
https://en.wikipedia.org/wiki/Hash_array_mapped_trie
https://en.wikipedia.org/wiki/Hash_array_mapped_trie
https://en.wikipedia.org/wiki/Hash_array_mapped_trie

